

Nitrogen Management: Almonds – Where We've Been, Where We're Going

Gabriele Ludwig, Ph.D. Associate Director, Environmental Affairs Almond Board of California Reactive Nitrogen Workshop June 5, 2013

California Almonds and the Almond Board of California

Spanning 500 miles throughout the Central Valley

100% of U.S. production

6,000+ growers, 100 "handlers"

Approximately 80% of worldwide production

2011: 2 bill lb crop

Top U.S. horticultural crop in export value

3 in acreage in California (~800,000 A)

ABC is a grower-enacted "Federal Marketing Order" established in 1950

 All growers and handlers (processors) are members

Operates under supervision of USDA-AMS

Source: NASS CFO

Trends in Cost of N, P & K Fertilizers

Source: http://www.ers.usda.gov/Data/FertilizerUse/

Research and Practices Then (1970s – 1980s) vs. Now (2012/3) 1070c-1090c 2012

	1970S-1980S	2012
Crop demand	 Primary factor dictating N use – crop potential 50 # N removed per 1000 # kernels 	• 55 – 70 # N removed per 1,000 # kernels
Yield vs. N use	 Best practice: 2,000 # kernel yield with 200 # N The norm: 1,200-1,300 # kernel yield with 200 # N 	• 4,000 # kernel yield with 275 # N
Nitrogen Use Efficiency (NUE)	Best practice: 50% The norm: 42-46%	• 75 – 85%
Timing	•1 or 2 apps in-season	 "Spoon feeding" – multiple apps, low doses

Nitrogen Use Efficiency (NUE)	Best practice: 50% The norm: 42-46%	• 75 – 85%
Timing	•1 or 2 apps in-season	 "Spoon feeding" – multiple apps, low doses Match demand during tree growth and crop development
Application	Broadcast or bandedFlood or impact sprinkler	Fertigation through drip or microsprinkler

9	r or 2 appoint occion	apps, low dosesMatch demand during tree growth and crop development
Application	Broadcast or bandedFlood or impact sprinkler	Fertigation through drip or microsprinkler
Leaf sampling	July leaf sample linked to next year's crop	 Early season leaf sampling - adjustments for this year's crop Improved leaf sampling - addresses orchard variability

Goal: Updated for more than

just N

N fertilization model

Fertility

budgeting

Energy and Greenhouse Gas Emissions from Almond Production (nursery through brown skin almond)

Figure 2. Breakdown of GHG emissions and Energy Emissions by Operation

From: Kendall, AM, S Brodt, E Marvinney (2012): Greenhouse Gas and Energy Footprint (Life Cycle Assessment) of California Almond Production. Annual Report to the Almond Board of California 2012. http://www.almondboard.com

California Almond Sustainability Program:

- Five self-assessment Modules now complete; developed with grower and expert input
 - **Irrigation Management**
 - **Nutrient Management**
 - **Energy Management**
 - Pest Management
 - Air Quality

www.sustainablealmondgrowing.org

Data to Date from California Almond Sustainability Program

Practice	Response	% of	Why not? (% of orchards)			
		orchards ± 95% confidence level	Not familiar	Not tried	Have tried	
Source of Nutrients						
Sources of nitrogen	Fertilizer Manure Compost Cover Crops	85.4 9.1 22.5 10.3				
Of orchards using compost, manure and/or N-fixing cover crops						
Calculations of total nitrogen applied include contributions from these sources	Yes No	43.5 ± 7.3 56.5 ± 7.3	8.5	34.5	13.6	
Nitrogen content of irrigation well water was analyzed in past 3 years	Yes No	57.8 ± 6.1 42.2 ± 6.1	5.1	25.4	11.7	
Of orchards where tests verify well water used for irrigation conta	ins nitrogen					
Calculations of total nitrogen applied include nitrogen from well water	Yes No	56.3 ± 6.8 43.7 ± 6.8	8.7	25.7	9.2	
Amount of Nutrients						
Calculated fertilizer rates are based on yield estimates and nutrient amounts removed by hulls, shells & nuts	Yes No	81.1 ± 4.2 18.9 ± 4.2	4.9	7.3	6.7	
Plant tissues are sampled and tested annually before applying nutrients to inform fertility management decisions	Yes No	89.2 ± 3.4 10.8 ± 3.4	2.8	2.8	5.1	
Plant tissues used for nutrient tests are sampled using recommended procedures	Yes No	87.8 ± 3.6 12.2 ± 3.6	2.2	4.8	5.1	
Results of nutrient tests are mapped to guide precision fertilizer applications	Yes No	19.8 ± 4.6 80.2 ± 4.6	5.8	63.8	10.6	

Almond Board of California Research Projects

- Brown* Nutrient Budget Approach to Fertilizer Management in Almonds
- Shackel/Sanden* Fertigation: Interaction of Water and Nutrient Management in Almonds
- Hopmans* Optimization of Water and Nitrate Use Efficiencies for Almonds under Micro-Irrigation
- Brown* Root Distribution and N Uptake
- Lampinen* Mobile Platform to Measure Canopy Light Interception and Water Stress
- Smart* Eval CA Almond for Root & Soil Carbon; Greenhouse Gas; Nitrogen Effic.
- Viveros Execution and Extension of Info for Nutrient budget Approach Project 11-PREC2-Brown
- DeJong Assessing the Carbon Budget of Almond Trees & Develop Model
- Kendall Life Cycle Assessment of GHG Emissions for Almond Production
- Smart, Brown, Harter: BMPs and Nitrate Leaching (Funding from FREP)
- * Co-funded by USDA SCRI Grant (2008-2013)